当前位置: 主页 > 新闻资讯 > 行业新闻 > Pellion技术公司正在研发更开放的电极结构,帮助镁离子流动

Pellion技术公司正在研发更开放的电极结构,帮助镁离子流动

发表日期:2017-05-02 06:33 点击量:
电池组作为世界上最轻的金属,锂拥有巨大的重量优势。但一些研究者认为,下一代电池组应该使用更重的元素,比如镁。每个锂离子只能携带一个电荷,而二价的镁离子能携带两个电荷,这意味着可以释放的电能提高了一倍。不过,镁也有自己的问题。锂离子能轻松通过电解液和电极,而携带两个电荷的镁离子移动速度缓慢,就像是在黏稠的糖浆中穿行。
美国阿贡国家实验室的电池组研究人员彼得˙丘帕斯(Peter Chupas)正在与JCESR合作,他用高能X射线轰击各种电解液中的镁,来研究镁为什么会受到巨大的阻力。截至目前,他和同事发现,镁离子能强烈吸引周边溶液中的氧,从而吸引一大群溶剂分子,这使得镁离子变得沉重。
美国劳伦斯伯克利国家实验室的材料科学家克里斯廷˙佩尔松(Kristin Persson)正在用超级计算机模拟潜在新型电池组的内部结构,她正在试图从大约2 000种电解液中,找到一种更好的电极与电解液的组合,让镁离子可以更顺畅地通过电解液。
佩尔松和麻省理工学院的材料科学家赫布兰德˙塞德(Gerbrand Ceder)成立了Pellion技术公司,来研发这种高容量镁电池组。公司对其进展三缄其口,目前只发表了一篇关于电极的研究论文。2013年底公开的一大批专利表明,Pellion技术公司正在研发更开放的电极结构,帮助镁离子流动。包括丰田、LG、三星和日立在内的各大电子产品公司,都在研发类似的电池组,但这些公司也都很少透露相关进展。
1991年,索尼公司推出第一款商业版锂离子电池组,与之相比,如今锂离子电池组的能量密度(单位质量所存储的能量)已经是原来的两倍多,而价格只有当初 的1/10。不过,锂离子电池组的能量密度已经接近极限。许多研究者认为,对锂离子电池组的改进,最多还能将能量密度再提高30%。这意味着,锂离子电池 组永远不能像一油箱汽油那样,让电动汽车连续行驶800千米,也不能让“电老虎”般的智能手机续航许多天。
我们现在生活中已离不开锂离子 电池组,因为手机、移动电脑等常用设备里都是使用的锂离子电池组为能源,移动电源也是用的锂电池组电芯,这是目前可充电电池组的最佳选择。去年,消费者们 购买了50亿只锂离子电池组,用来给笔记本电脑、照相机、手机和电动汽车供电。美国阿贡国家实验室能源存储联合研究中心(JCESR)的负责人乔治˙克拉 布特里(George Crabtree)说,“这是有史以来最好的电池组技术”。不过,克拉布特里的目标远不止于此。
2012年,JCESR从美国能源部争取到1.2亿美元的资金,用于研究超越锂离子电池组的技术,而亚洲、美洲和欧洲的许多研究团队和公司都在寻找取代并超越锂离子电池组的新技术。
氧电池组温弗里德˙维尔克(Winfried Wilcke)自称是“一个非常幸福的拥有特斯拉S电动汽车的车主”,他说,正是这辆电动汽车让他意识到电池组研究是当务之急。
一 开始,维尔克关注的是高能量密度电化学存储的理论极限——锂与氧气的氧化反应。与其他类型的电池组相比,这种“会呼吸的”锂–氧电池组有巨大的重量优势, 因为其中一种主要反应原料——氧气,不必再装载到电池组中。理论上,锂–氧(Li-O)电池组的能量密度可以媲美汽油发动机,比现今电动汽车电池组的能量 密度高10多倍。
在驾驶着他的特斯拉S电动汽车行驶了22 000多千米之后,维尔克对这辆汽车的电池组所提供的400千米的续航能力感到满意。他说,真正的问题是钱,电动汽车的电池组成本在每千瓦时500美元以 上,“电动汽车不被大众接受的真正原因,不是能量密度,而是价格”。所以,维尔克现在更看好一种基于钠的、更便宜的燃料电池组。根据理论预测,钠–氧 (Na-O)电池组的能量密度是锂–氧电池组的一半,不过,这已经比锂离子电池组高出5倍了,而且,钠比锂更便宜。因此,维尔克满怀希望地说,钠–氧电池 组的成本或许可以接近每千瓦时100美元,这正是JCESR等研发机构认为消费者能够承担得起的价格。
锂–硫电池组2013 年初,化学工程师埃尔顿˙凯恩斯(Elton Cairns)认为,自己研制出了一种新型化学电池组,只有硬币大小。到2013年7月,他的电池组已在美国劳伦斯伯克利国家实验室经历了1 500次充放电循环,而电池组容量只损失了一半。这样的性能,基本可以媲美最好的锂离子电池组了。凯恩斯的电池组基于锂–硫(Li-S)技术,所使用的材 料价格非常低廉,理论上的能量密度是锂离子电池组的5倍多。
锂–硫电池组的主要优势之一,在于减掉了锂离子电池组的“无效体重”。在一块 典型的锂离子电池组中,多层石墨电极占据了大量体积,而这些电极基本上只是用来吸附锂离子。这些锂离子经由电解液,流到多层金属氧化物电极。和所有电池组 一样,电子必须通过外部电路流动,来平衡正负电荷,从而产生了电流。要想给电池组充电,则须通过外加电压来反转电子流动,这同时也会让锂离子回到石墨电极 上。
在锂–硫电池组中,一块纯金属锂片代替了多层石墨电极。这块锂片既是电极,也是锂离子的来源。电池组放电时,锂片变薄;电池组充电 时,它又恢复原状。金属氧化物电极也被更廉价、更轻的硫所取代。硫吸附锂的能力更强,每个硫原子可以结合两个锂原子,而在锂离子电池组中,结合一个锂原子 就需要不止一个金属原子。所有这一切使得锂–硫电池组在成本和重量两方面都具有明显优势。
一些研究者质疑,学术界的认同未必能转换成商业 上的成功。在实验室,研究人员通常使用少量硫和大量电解液,这样比较易于研究,但不能制成高能量密度的电池组。在PolyPlus公司(一家制造电池组的 公司,位于凯恩斯实验室以西5千米的地方)研究锂–硫电池组超过20年的史蒂夫˙维斯科(Steve Visco)说,增加硫和减少电解液会使电池组更容易坏掉,要想以低廉的成本制造出能经受住一年四季温度考验的商品化电池组相当困难。
至 少有一家公司——英国Oxis能源公司——看好锂–硫电池组的前景。该公司声称,它们已经制造出可以充放电900次的大型锂–硫电池组,能量密度与当前的 锂离子电池组不相上下。Oxis能源公司正在与美国Lotus工程公司合作,他们希望在2016年前开发出可用于电动汽车的电池组,能量密度将达到400 Wh/kg。
你是否还想继续阅读:
细说2016动力电池市场
一枝独秀的时代已经结束,各项技术起头并进的“战国时代”开始了
细说全球汽车蓄电池十大品牌 

相关文章